Wall ingrowths in epidermal transfer cells of Vicia faba cotyledons are modified primary walls marked by localized accumulations of arabinogalactan proteins.

نویسندگان

  • Kevin C Vaughn
  • Mark J Talbot
  • Christina E Offler
  • David W McCurdy
چکیده

Despite the importance of transfer cells in enhancing nutrient transport in plants, little is known about how deposition of the complex morphology of their wall ingrowths is regulated. We probed thin sections of mature cotyledon epidermal transfer cells of Vicia faba with affinity probes and antibodies specific to polysaccharides and glycoproteins, to determine the distribution of these components in their walls. Walls of these transfer cells consist of the pre-existing primary wall, a uniformly deposited wall layer and wall ingrowths which are comprised of two regions; an electron-opaque inner region and an electron-translucent outer region. The primary wall reacted strongly with antibodies against esterified pectin, xyloglucan, the side chains of rhamnogalaturonan-1 and a cellulase-gold affinity probe. The electron-opaque inner region of wall ingrowths displayed a similar labeling pattern to that of the primary wall, showing strong cross-reactivity with all antibodies tested, except those reacting against highly de-esterified pectins. The electron-opaque outer layer of developmentally more mature wall ingrowths reacted strongly with anti-callose monoclonal and polyclonal antibodies, but showed no reaction for pectin or xyloglucan antibodies or the cellulase-gold affinity probe. The plasma membrane-wall interface was labeled strongly with anti-arabinogalactan protein (AGP) antibodies, with some AGP-reactive antibodies also labeling the electron-translucent zone. Nascent wall ingrowths were labeled specifically with AGPs but not anti-callose. A reduction in wall ingrowth density was observed when developing transfer cells were exposed to beta-d-glucosyl Yariv reagent compared with controls. Our results indicate that wall ingrowths of transfer cells are primary wall-like in composition and probably require AGPs for localized deposition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reactive oxygen species form part of a regulatory pathway initiating trans-differentiation of epidermal transfer cells in Vicia faba cotyledons

Various cell types can trans-differentiate to a transfer cell (TC) morphology characterized by deposition of polarized ingrowth walls comprised of a uniform layer on which wall ingrowths (WIs) develop. WIs form scaffolds supporting amplified plasma membrane areas enriched in transporters conferring a cellular capacity for high rates of nutrient exchange across apo- and symplasmic interfaces. Th...

متن کامل

Identification of Candidate Transcriptional Regulators of Epidermal Transfer Cell Development in Vicia faba Cotyledons

Transfer cells (TCs) are anatomically-specialized cells formed at apoplasmic-symplasmic bottlenecks in nutrient transport pathways in plants. TCs form invaginated wall ingrowths which provide a scaffold to amplify plasma membrane surface area and thus increase the density of nutrient transporters required to achieve enhanced nutrient flow across these bottlenecks. Despite their importance to nu...

متن کامل

De novo assembly of a genome-wide transcriptome map of Vicia faba (L.) for transfer cell research

Vicia faba (L.) is an important cool-season grain legume species used widely in agriculture but also in plant physiology research, particularly as an experimental model to study transfer cell (TC) development. TCs are specialized nutrient transport cells in plants, characterized by invaginated wall ingrowths with amplified plasma membrane surface area enriched with transporter proteins that fac...

متن کامل

Cellulose synthesis is required for deposition of reticulate wall ingrowths in transfer cells.

Despite the recognized physiological importance of transfer cells, little is known about how these specialized cells achieve localized deposition of cell wall material, leading to amplification of plasma membrane surface area and enhanced membrane transport capacity. This study establishes that cellulose synthesis is a key early factor in the construction of 'reticulate' wall ingrowths, an elab...

متن کامل

A Structurally Specialized Uniform Wall Layer is Essential for Constructing Wall Ingrowth Papillae in Transfer Cells

Transfer cells are characterized by wall labyrinths with either a flange or reticulate architecture. A literature survey established that reticulate wall ingrowth papillae ubiquitously arise from a modified component of their wall labyrinth, termed the uniform wall layer; a structure absent from flange transfer cells. This finding sparked an investigation of the deposition characteristics and r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant & cell physiology

دوره 48 1  شماره 

صفحات  -

تاریخ انتشار 2007